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LETTER TO THE EDITOR 

The dynamic critical exponent of the q = 3  and 4 state Potts 
model 
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8 Physics Department, St Francis Xavier University, Antigonish, Nova Scotia, Canada 
B2G IC0 

Received 29 August 1986 

Abstract. The dynamic Monte Carlo renormalisation group method introduced by Jan, 
Moseley and Stauffer is used to determine the dynamic critical exponent, z, for the q = 3 
and q = 4 state Potts model in two dimensions. We find that z = 2.43 f 0.15 and 2.36*0.20 
for the q = 3 and 9 = 4 state Potts models. These results are in disagreement with the recent 
conjecture of Domany. 

The static critical properties of the twc-dimensional q = 1,  2, 3 and 4 state Potts models 
are well known (see, e.g., Wu (1982) for a recent review). However, there is very little 
information about the dynamical properties of these models either with Glauber or 
Kawasaki dynamics. Forgacs er a1 (1980) extended a Migdal-type real space renormali- 
sation method to analyse the dynamical properties and within a totally self-consistent 
calculation reported z = 1.82 ( q  = 2), 1.92 ( q  = 3)  and 2.0 ( q  = 4). Binder (1981) 
measured the non-linear relaxation exponent, A"', of the magnetisation for q = 2, 3 
and 4 and found the A"' was more or less independent of q and - 1.9. The values for 
z obtained through the scaling relation z = ( A . " ' + / ~ ) / Y  are 2.03 ( q  = 2), 2.41(q = 3)  and 
2.98 ( q  = 4). Recently Tang and Landau (1986) have initiated a detailed re-examination 
of the non-linear exponent of the Potts model and have also found that A"' is 
independent of q and -2.1 for q = 2, 3 and 4. Tobochnik and Jayaprakash (1982), 
using a dynamic Monte Carlo renormalisation group, found z (=2.70*0.4) for the 
q = 3 state Potts model on the square lattice. Finally Aydin and Yalabik (1984, 1985) 
presented two calculations of z for the q = 3  model: (i)  a dynamic Monte Carlo 
renormalisation group ( z  = 2.7 k0.4) and (ii) a finite-size scaling analysis ( z  = 2.2*0.1). 
Domany (1984) mapped the dynamic properties of the two-dimensional Potts model 
onto a two-dimensional cellular automata model which in turn was mapped onto a 
static equilibrium three-dimensional Ising model. The decay of the correlation function 
in the direction perpendicular to the original two-dimensional plane together with a 
particular, though arbitrary, choice of the singular behaviour of the free energy exponent 
allowed for the determination of the critical exponent z = 2 ( q  = 2) with possible 
logarithmic corrections 2.8 ( q  = 3) and 4.0 ( q  = 4 ) .  Kalle's (1984) work on the two- 
dimensional Ising model has cast some doubt on this conjecture. 

In this letter the dynamic exponent for the two-dimensional q = 3 and 4 state Potts 
model is determined. The dynamic Monte Carlo renormalisation group approach of 
Jan et a1 (1983) with Glauber dynamics has been successfully applied to the 2~ and 
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3~ Ising models (Kalle 1984) and moreover yielded exact results for the one-dimensional 
4 = 2, 3 and 4 state Potts model (Leyvraz and Jan 1986). This method will be used to 
determine the dynamic properties of the two-dimensional Potts model. 

Finite-size scaling arguments predict that in a system of linear extent L, the 
equilibrium magnetisation M obeys the following ansatz: 

~ ~ = ~ - ~ I v f [ ( r -  T,)L’/”] (1) 

as the time t tends to CO. T represents the temperature, p the order parameter exponent 
and Y the correlation length exponent. 

The non-equilibrium relaxation of the magnetisation is described by 

ML = ~-@/”f[( T -  r,)L’/”, t /  L’] 

ML = L-’/”g( t /  L’). 

( 2 )  

(3) 

and at T = T,, the critical temperature, by 

Thus the magnetisation, M,, of a system of size L, at time t l  will be equal at t2 to the 
magnetisation MLz of a system of size L2 if we have 

Let us now consider a system and its renormalised images formed by the blocking of 
spins in a cell of size b. In a system of size L there are ( L / 6 ) d  superspins where each 
superspin is *l depending on the majority of spin orientations within a cell of size 6. 
Stauffer (1984) has shown that the magnetisation of the renormalised system is described 
by 

Mb - h (  t /  b’) at T =  T,. ( 5 )  

Thus when Mb, = M ,  the times t ,  and t2 are related by 

J=(!L)’. t 

f2 

It is important to emphasise that no prefactor b-Ol“ enters this expression. 
We consider a 2~ system of Potts spins whose energy is described by 

ff = - J  c a , ,  where q = 1,2,. . . , 4. 
U P ,  

By means of the scaling relation ( 6 )  we are able to calculate z through the following 
procedure. The system is initialised in a ground state and allowed to evolve to 
equilibrium configurations at T, through Glauber dynamics. The Monte Carlo (Binder 
1984) procedure consists of visiting the sites in a sequential manner and flipping the 
spin from its present state with a probability P,, proportional to the local configuration, 
i.e. 

1 A E G O  
A E > O  

A E = E ,  - Ep 
pn = exp ( - A  E / k T,) 

where P, is the probability of the new state, E,  the energy of the new state if the spin 
flip is successful and Ep the energy of the present state. The Monte Carlo routine was 
written in multi-spin coding form (Rebbi and Swendsen 1980) and this allows the 
simulation of lattice systems of L = 800 for 4 = 3 and 4. The renormalisation factors 
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Figure 1. Variation of the original magnetisation and the renormalised magnetisation with 
time (Monte Carlo steps per spin) for the 9 = 3 Potts model. The numbers on the data 
sets give b, the length rescaling factor. 
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Figure 2. Variation of the original magnetisation and renormalised images with time (Monte 
Carlo time steps per spin) for the q = 4 Potts model. The numbers on the data sets give 
b, the length rescaling factor. 
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for the cells are b = 2, 3, 4, 6, 8, 12 and 16. The order parameter for the system and 
the renormalised images are shown in figure 1 for q = 3 (average over 12 trials) and t 
up to 1000 Monte Carlo time steps. Figure 2 shows the equivalent data for q = 4 where 
the averages are over 8 trials and t = 2000 Monte Carlo time steps. The analysis of 
the data proceeds as follows. The timescale is shifted by an amount A t  = t - t ’  in order 
to observe maximum overlap between the magnetisation of the different renormalised 
systems for the same value of the ratio of b’/ b. The dynamic exponent z is then defined 
as In At/ln( b’/ b )  and is 2.43 1.0.15 for q = 3 and 2.36 1. 0.20 for q = 4. We also re- 
analysed the q = 2  Potts model to find z = 2.19iz0.1 in excellent agreement with other 
numerical values (see table 1 ) .  

Table 1. The shifts along the time axis necessary to produce maximum overlap in the 
magnetisation for different scale factors. 

b’l b q = 2  q = 3  q = 4  

Displacement of graphs 1’1 t (  z )  

2 4.5 

3 11.5 

4 22.5 

(2.17) 

(2.22) 

(2.25) 

(2.16) 

(2.14) 

3 
2 2.4 

3 1.85 

Average z -2 .19i0.05 

5.2 
(2.38) 
14 
(2.40) 
24 
(2.29) 
2.9 

(2.63) 
2.0 

(2.40) 
2.43 i 0.15 

5.2 
(2.38) 
12.0 
(2.26) 
22 
(2.23) 
2.8 

(2.54) 
1.95 

(2.34) 
2.36 * 0.2 

The dynamic exponents found for the q = 3 and 4 Potts model clearly exclude the 
conjecture of Domany (1984). Our results are in agreement with the self-consistent 
Migdal dynamic renormalisation work of Forgacs et a1 (1980) and also with the q = 3 
finite-size scaling approach of Aydin and Yalabik (1985), Tang and Landau (1986), 
Tobochnik and Jayaprakash (1982) and Binder (1981), but not the others referred to 
earlier. The results obtained for the q = 4 model are in marked disagreement with the 
Monte Carlo results. It is possible that the system may still, at t = 2000 Monte Carlo 
time steps, be too far from equilibrium; however, this can only be resolved with a 
ten-fold increase in CPU time (-100 h on an IBM 3091). Our results clearly indicate 
that z is only weakly dependent on q for q 2 2. 

We warmly thank A Coniglio, D Landau and D Stauffer for enlightening comments. 
The Center for Polymer Studies is supported by grants from NSF and ARO. NJ is 
the recipient of an NSERC award. 
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